# Introduction

Welcome to the *Pneuride* range of air bellows. These bellows are used in a wide variety of applications:

## **Primary Application:**

Suspension media in all sorts of vehicles (buses, trucks, trailers, semi trailers, demountable systems, container handling systems, coaches, ambulances, etc).

#### **Secondary Application:**

*Pneuride* Bellows, whilst originally designed for vehicle applications, have a range of unique characteristics which make them extremely attractive for industrial applications such as pneumatic/hydraulic actuation, isolation mounts, height and level control devices.

Furthermore, although not specifically designed as a noise insulator, Pneuride Bellows do reduce noise transmission.

Bellows are produced in a range of sizes from  $4\frac{1}{2} \times 1$  up to  $21\frac{1}{2} \times 2$ .

#### Lobes

*Pneuride* Bellows are manufactured using a mixture of elastomers and textile reinforcement which produces a high quality, high performance product. They are frictionless, economical and virtually maintenance free and come packaged in one of three forms: 1, 2, or 3 lobes...





## Angular & axial displacement





## Key







## **Conditions of Use**

| Maximum Working Pressure                        | 8bar     |
|-------------------------------------------------|----------|
| Burst Pressure                                  | 25-50bar |
| Maximum Angle between<br>Top and Bottom Plates, |          |
| dependent upon size                             | 7°-15°   |
| Maximum Axial Offset                            | 10mm     |

# Precautions to Observe

Do not exceed stated stroke.

Do not inflate assembly when it is unrestricted.

Do not inflate beyond pressures stated without prior consultation.

Respect maximum and minimum heights.

The bellows must be securely fixed. Do not use without air pressure.

# **Operating Temperature**

Minimum -30°C (-40°C Static) Maximum +70°C (+90°C Static)

## Materials

- **Bellows** : Manufactured from various rubbers
- Metal Parts : Mild steel protected by zinc passivate and yellow chromate, or cast aluminium

#### Note

The bellow assemblies can be completely dismantled







# Characteristics

| Bellows        | Туре    | Ø<br>Max | Minimum<br>height | Maximum<br>height | Total<br>stroke | Static<br>height | Øc  | Ø<br>Space<br>envelope | Weight<br>in kg |
|----------------|---------|----------|-------------------|-------------------|-----------------|------------------|-----|------------------------|-----------------|
|                | 4½ × 1  | 125      | 45                | 90                | 45              | 65               | 93  | 140                    | 0,75            |
| 0.0.0          | 6×1     | 168      | 58                | 108               | 50              | 80               | 127 | 180                    | 1,95            |
|                | 8×1     | 230      | 47                | 120               | 73              | 90               | 156 | 240                    | 3,05            |
| <u>, a a a</u> | 10 × 1  | 280      | 50                | 135               | 85              | 95               | 181 | 295                    | 3,8             |
| 1 lobe         | 12 × 1  | 330      | 50                | 145               | 95              | 95               | 232 | 345                    | 4,75            |
|                | 14½ × 1 | 395      | 47                | 165               | 118             | 105              | 283 | 410                    | 6,9             |
|                | 4½ × 2  | 125      | 65                | 145               | 80              | 100              | 93  | 140                    | 0,93            |
| 2 lobes        | 6 × 2   | 168      | 73                | 170               | 100             | 120              | 127 | 180                    | 2,25            |
|                | 8 × 2   | 230      | 72                | 225               | 153             | 150              | 156 | 240                    | 3,75            |
|                | 9¼×2    | 260      | 70                | 240               | 170             | 160              | 168 | 275                    | 4,5             |
|                | 10 × 2  | 280      | 70                | 240               | 170             | 160              | 181 | 295                    | 4,6             |
|                | 12 × 2  | 330      | 74                | 240               | 166             | 160              | 232 | 345                    | 5,85            |
|                | 14½ × 2 | 395      | 70                | 280               | 210             | 180              | 283 | 410                    | 8,5             |
|                | 16 × 2  | 430      | 77                | 320               | 243             | 180              | 283 | 445                    | 8,8             |
|                | 4½ × 3  | 125      | 100               | 200               | 100             | 145              | 93  | 140                    | 1,15            |
|                | 6 × 3   | 168      | 105               | 255               | 150             | 180              | 127 | 180                    | 2,55            |
|                | 10 × 3  | 280      | 100               | 365               | 265             | 235              | 181 | 295                    | 5,4             |
|                | 12 × 3  | 330      | 100               | 430               | 330             | 222              | 232 | 345                    | 7               |
| 3 lobes        | 14½ × 3 | 395      | 100               | 476               | 376             | 280              | 283 | 410                    | 10              |
| 010000         | 16 × 3  | 430      | 125               | 500               | 375             | 280              | 283 | 445                    | 16              |

**PNEURIDE** 

# **Force Table**

The force developed is a function of the bellows crossectional area. In the tables below the y-axis shows the force produced at one bar pressure for a variety of x-axis height.





| Туре                     | 4½"<br>×1 | 4½"<br>×2 | 4½"<br>×3 | 6"<br>×1 | 6"<br>x2 | 6"<br>×3 | 8"<br>×1 | 8"<br>×2 | 9¼"<br>×2 | 10"<br>×1 | 10"<br>×2 | 10"<br>×3 | 12"<br>×1 | 12"<br>×2 | 12"<br>×3 | 14½"<br>×1 | 14½"<br>×2 | 14½"<br>×3 | 16"<br>×2 | 16"<br>×3 |
|--------------------------|-----------|-----------|-----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|
| Static<br>height<br>(mm) | 65        | 100       | 145       | 70       | 120      | 180      | 90       | 150      | 160       | 95        | 160       | 235       | 95        | 160       | 222       | 105        | 180        | 280        | 180       | 280       |
| Min.<br>height<br>(mm)   | 45        | 65        | 100       | 58       | 70       | 102      | 47       | 72       | 70        | 50        | 70        | 100       | 47        | 74        | 100       | 147        | 70         | 100        | 77        | 125       |
| Load in<br>daN           | 12        | 15        | 20        | 15       | 20       | 12       | 13       | 14       | 12        | 12        | 11        | 77        | 10        | 10        | 81        | 9          | 9          | 86         | 9         | 65        |



#### Isolation

*Pneuride* Bellows are an excellent solution to vibration isolation problems.

The table opposite shows the natural frequency of the bellows at static height when pressurised at 4 bar (0.4 Mpa).

| Dimension | Frequency<br>(Hz)<br>at static<br>height | Static<br>height<br>(mm) | Load in kg<br>at 4 bar<br>at static<br>height |  |  |  |
|-----------|------------------------------------------|--------------------------|-----------------------------------------------|--|--|--|
| 4½ × 1    | 4,80                                     | 65                       | 265                                           |  |  |  |
| 41/2 × 2  | 2,80                                     | 100                      | 265                                           |  |  |  |
| 41/2 × 3  | 2,26                                     | 145                      | 265                                           |  |  |  |
| 6 × 1     | 4,25                                     | 80                       | 490                                           |  |  |  |
| 6 × 2     | 2,28                                     | 120                      | 522                                           |  |  |  |
| 6 × 3     | 1,75                                     | 180                      | 580                                           |  |  |  |
| 8 × 1     | 2,98                                     | 90                       | 816                                           |  |  |  |
| 8×2       | 1,99                                     | 150                      | 897                                           |  |  |  |
| 9¼×2      | 1,95                                     | 160                      | 1088                                          |  |  |  |
| 10 × 1    | 2,84                                     | 95                       | 1428                                          |  |  |  |
| 10 × 2    | 1,88                                     | 160                      | 1448                                          |  |  |  |
| 10 × 3    | 1,65                                     | 235                      | 1387                                          |  |  |  |
| 12 × 1    | 2,81                                     | 95                       | 2080                                          |  |  |  |
| 12 × 2    | 1.66                                     | 160                      | 2080                                          |  |  |  |
| 12 × 3    | 1,54                                     | 222                      | 2040                                          |  |  |  |
| 14½ × 1   | 2,54                                     | 105                      | 3060                                          |  |  |  |
| 14½ × 2   | 1,71                                     | 180                      | 3100                                          |  |  |  |
| 14½ × 3   | 1,44                                     | 280                      | 3264                                          |  |  |  |
| 16 × 2    | 1,45                                     | 180                      | 3672                                          |  |  |  |
| 16 × 3    | 1,21                                     | 280                      | 3451                                          |  |  |  |

The table below allows the calculation of the percentage isolation at given forcing frequencies and natural air spring frequencies.

Absolute vibration isolation chart for air springs



